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Frames are bases with more vectors.

Let’s consider Fd, where F = R or C.

A basis for Fd is a linearly independent spanning set of d vectors.

A frame for Fd is any spanning set of n ≥ d vectors.

We can think of them as bases with some extra vectors added.

Extra vectors → no linear independence and redundant

Linear independence → unique representations

If frames are redundant and linear independence is nice, why use frames?
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Redundancy is the benefit of frames.

Having redundant representations can be useful for a few things:

Easing losses and noise from transmission
I (1, ?, 3)

I (1, ?, 3)→ (1, 1, 1|2, ?, 2|3, 3, 3)
I (3,1)-repetition code

Obtaining sparse representations and data compression
I Add v to standard basis in R5

I (0, 0, 0, 0, 0, 1)→ (0, 5, 3)
I JPEG image compression

Redundant frames ease losses in transmission and can obtain sparse
representations. How do we know which ones are good?
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Frames have a reconstruction formula using frame vectors.

Theorem

Let {vj}nj=1 be a frame for Fd and let S be its frame operator. Then,

x =

n∑
j=1

〈S−1vj , x〉vj , ∀x ∈ Fd.

Frame operators are linear mappings → it has a matrix form!

S is always invertible but matrix inversion can be expensive.

For orthonormal bases S = I.

Other reconstruction coefficients possible!

The inverse of frame operators are needed for the reconstruction formula,
but it can be hard to compute. Can we make it easier?
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Tight frames give us good frame operators.

Let {vj}nj=1 be a frame for Fd. The frame operator, S : Fd → Fd, is
the linear map

S(x) =

n∑
j=1

〈vj , x〉vj .

S is self-adjoint and positive definite → S has real and positive
eigenvalues.

A frame is tight if all those eigenvalues are the same.

In this case we have S = AI, where A is the repeated eigenvalue.

Tight frames are good for computing. What are the difficulties in
computing in practice?
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Extremely high dimensions can still be difficult.

Inverting d× d frame operators is O(d3).

This seems fine unless d is very large.
I Hyperspectral imaging
I Video processing

Inversion computations might still be too slow.

Idea: Can we do more with less by taking well-conditioned
subensembles?

With very high dimensional data, computation could still be slow. We
want to use well-conditioned subensembles but what does that mean?
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We can cheat with low-dimensional signals. 1

If we sample images with lots of zeros correctly, we can rebuild them near
perfectly, or sometimes perfectly! Why does this work?

1Figure 1 in Candes, Romberg, Tao 2005
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We can formulate the problem using frames.

We wish to measure an image with n pixels using d� n linear
measurements.

How do we recover the image from our undersampled measurements?

Problem

Let d� n. Given an d× n matrix A and y ∈ Fd, solve

y = Ax.

We are trying to solve a matrix-vector equation that should have many
solutions. Why would having lots of zeros make that solution easier to

find?
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Solutions with many zeros have few variables.

x is secretly a vector of
3 variables.

4 equations, 3 unknowns,
could be solvable!

We only know y...which
xi are the variables?

Our image secretly only has a few variables to solve for but which ones?
How do we design A to account for this?
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RIP accounts for different variable combinations.

Definition

Let k be a positive integer and δ > 0. An d× n matrix A satisfies the
(k, δ)-restricted isometry property (RIP) if for every vector x ∈ Fn with at
most k nonzero entries

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2.

We call x with this property k-sparse.

Mapping A to k-dimensional subspaces is almost an isometry →
almost information preserving.

This requires
(
n
k

)
checks. This is computationally infeasible...

RIP matrices scan k-subspaces nicely, but they’re hard to find. Is it worth
it?
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RIP quantifies how many zeros is enough.

Theorem (Candes ’08)

Let k be a positive integer and let δ <
√

2− 1. Suppose x′ is a k-sparse
vector we wish to recover. If A is (2k, δ)-RIP, then the solution to

argmin ‖x‖1 subject to y = Ax

is precisely x′. In particular, the recovery of x′ is exact.

RIP matrices are good measurement matrices. If they’re hard to check
how do people find them?
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Dealing with RIP is a battle between average and worst
case performance.

How do people make RIP matrices?

1 Random matrices: Works with high probability but you can’t be sure...

2 Explicit constructions: Can make some guarantees based on dot
products between columns but worse performance than random.

3 Random subensembles: Check random subensembles to verify RIP
with high probability.

Random ensembles balance explicit constructions and good average vs
worst case performance.
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We can analyze the spectra of random subensembles.

Given an n× n self-adjoint matrix Z with eigenvalues λ1 ≤ · · · ≤ λn,
the empirical spectral distribution, µZ , is the uniform probability
measure over the spectrum of Z.

Our Z will be the frame operator or the Gram matrix of our random
subensembles.

We want to compare to other known distributions associated with
random matrices.

The empirical spectral distribution allows us to analyze spectra of random
subensembles. How do we compare them?
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We can compare using Kolmogorov-Smirnov distance.

KS distance = largest distance
between the two CDFs.

X ∈ Fd×n is our frame.

XK in Fd×k is our submatrix of
X.

Compare KS distance of the
CDFs of:

I ESD of XKX
∗
K

I hypothesized limiting
distribution

We can compare distributions with KS distance. What should the limiting
distribution be?
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The limiting distribution seems to be Wachter’s MANOVA.

Wachter: As k/d→ β and d/n→ γ, the ESD of MANOVA(n, d, k,R)
ensembles converges to the MANOVA(β, γ) distribution with density

fMANOV A
β,γ (x) =

√
(x− r−)(r+ − x)

2βπx(1− γx)
· I(r−,r+)(x)

+

(
1 +

1

β
− 1

βγ

)+

· δ(x− 1

γ
)

(x)+ = max(0, x)

r± = (
√
β(1− γ)2 ±

√
(1− βγ))2

Supported on [r−, r+].

MANOVA ensembles seem related and their ESD converges to Wachter’s
distribution. Is there evidence they are related to frame subensembles?
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Evidence shows it really is Wachter’s MANOVA.

∆KS(XK) =
‖F (XK)− FMANOV A

β,γ ‖KS
d/n→ γ = 0.5

k/d→ β = 0.8

Graph:
−1

2 lnEK(∆KS(XK)) vs.
ln(n)

Figure: Haikin, Gavish, Zamir computer
simulation (2017)

We have numerical evidence of convergence to MANOVA(β, γ) for tight
frames. Can we prove this for any of them?
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Equiangluar tight frames spread information evenly.

Let F = R or C. Let X ⊂ Fd be a tight frame
of n ≥ d unit vectors. X is an equiangular
tight frame if

|〈xi, xj〉| =

√
n− d
d(n− 1)

, i 6= j.

ETFs are the next closest thing to orthonormal bases.

If we think of ETFs as signal channels, they spread information and
prevent interference.

ETFs spread information well. How should we analyze the spectra of their
subensembles?
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We can study frames through its Gram matrix.

Given a frame F ∈ Fd×n, its Gram matrix, G is an n× n matrix defined by

Gij = 〈xi, xj〉, i, j ∈ {1, · · · , n}.

In the case of real ETFs we can write

G = I +

(
n− d
d(n− 1)

) 1
2

S,

where the off-diagonal entries of S consists of ±1 and the main diagonal
consists of zeros.

The Gram matrix records information about inner products, but why is S
special?
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ETFs are closely tied to symmetric conference matrices.

An n × n matrix, S, is a conference
matrix if

1 Sii = 0, for every i ∈ [n].

2 Sij ∈ {±1}, for every i, j ∈ [n]
and i 6= j.

3 STS = (n− 1)I.

Relation with ETFs: If S is a symmetric conference matrix, then

I +
1√
n− 1

S

is the Gram matrix of an ETF of n vectors in Rn/2.

Real ETFs of redundancy 2 are closely linked to symmetric conference
matrices. What do “typical” ESDs of them look like?
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The spectrum of subensembles of Paley conference
matrices look like a familiar distribution.

Paley conference matrix of order n = 10010

For each p: I ⊂ [n] where i ∈ I with probability p, independently

ESD of principal submatrix using I

It seems when we subsample Paley conference matrices, the ESD converges
to the Kesten-McKay distribution with parameter ν = 1/p. Is this true?
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The spectrum of subensembles of symmetric conferences
matrices converge to the Kesten-McKay distribution.

A sequence {ni}i∈N is a lacunary sequence if there exists λ > 1 so that for
each i, ni+1 ≥ λni.

Theorem (M., Mixon, Parshall (2019))

Fix p ∈ (0, 12) and take any lacunary sequence L for which there exists a
sequence {Sn}n∈L of symmetric conference matrices of increasing order n.
Let Xn be the corresponding random principal submatrix of Sn where
indices are included independently with probability p. Then, the empirical
spectral distribution of 1

p
√
n
Xn converges almost surely to the

Kesten-McKay distribution with parameter ν = 1/p.

The spectrum of random subensembles of symmetric conference matrices
does indeed converge to the Kesten-McKay distribution. How does the

proof work?
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The proof involves probability and combinatorics.

Proposition

Let {ζi}∞i=1 be a sequence of uniformly subgaussian random probability
measures, and let µ be a non-random subgaussian probability measure.
Suppose that for every k ∈ N it holds that

1 E
∫
R
xkdζi(x)→

∫
R
xkdµ(x), and

2

∞∑
i=1

Var

(∫
R
xkdζi(x)

)
<∞.

Then, ζi converges almost surely to µ.

This theorem uses a lot of ideas from both probability theory and graph
theory. How did we end up in the realm of combinatorics?
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Kesten-McKay moments involve Catalan’s triangle.

Catalan’s triangle is given by

C(n, k) :=
(n+ k)!(n− k + 1)

k!(n+ 1)!
,

and the n-th Catalan number is given by C(n, n). The Kesten-McKay
moments are given by∫

R
xkdµν(x) =

{∑k/2
j=1C(k/2− 1, k/2− j)νj(ν − 1)k/2−j if k is even,

0 if k is odd.

The proof involves Catalan numbers, because it naturally arises from the
moments of the Kesten-McKay distribution. How far can these ideas go?
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There’s more work to be done!

Our result applies to a very specific case: real equiangular tight frames of
redundancy 2.

Can this be extended to other redundancies?

What about non-equiangular tight frames?

Haikin, Gavish, and Zamir other conjectures:

Power law for rate of convergence

Universality for ETF convergence rate

Our work is only tip of the iceberg. There are many directions this can still
go.
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These are some good references.

Haikin, Zamir, Gavish. ”Random subsets of structured deterministic
frames have MANOVA spectra.”

M., Mixon, Parshall. ”Kesten-McKay law for random subensembles of
Paley equiangular tight frames.”

Haikin, Gavish, Mixon, Zamir. ”Asymptotic Frame Theory for Analog
Coding.”
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Thanks for listening! Any questions?
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