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Frames

A finite frame for CN is a set F = {ϕk}Mk=1 such that there exists
constants 0 < A ≤ B <∞ where

A‖v‖2
2 ≤

m∑
k=1

|〈v , ϕk〉| ≤ B‖v‖2
2

for any v ∈ CN . F is called a tight frame if A = B is possible.

Theorem
F is a frame for CN if and only if F spans CN .

Mark Magsino (UMD) Gabor Frames and CAZACs



Gabor Frames CAZAC Sequences CAZAC Generated Gabor Frames Gram Matrix Method

The Frame Operator

Definition
Let F = {vi}Mi=1 be a frame for CN , x ∈ CN , and c ∈ CM .

(a) The analysis operator, T : CN → CM , is given by:

T (x) = {〈vi , x〉}Mi=1.

(b) The synthesis operator, T ∗ : CM → CN , is given by:

T ∗(c) =
M∑
i=1

c[i ]vi .

(c) The frame operator, S : CN → CN , is given by S = T ∗T , i.e.,

S(x) =
M∑
i=1

〈v1, x〉vi .
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Reconstruction via Frames

Theorem
Let F = {vi}Mi=1 be a frame for CN and x ∈ CN . Then,

x =
M∑
i=1

〈x , S−1vi 〉vi .

Theorem
If F is a tight frame with bound A, then S = A IdN . In partciular,
S−1 = A−1IdN .

Mark Magsino (UMD) Gabor Frames and CAZACs



Gabor Frames CAZAC Sequences CAZAC Generated Gabor Frames Gram Matrix Method

Reconstruction via Frames

Definition
Let F = {vi}Mi=1 be a frame for CN . If for every x ∈ CN

G = {ui}Mi=1 satisfies

x =
M∑
i=1

〈x , ui 〉vi ,

then G is said to be a dual frame for F . Since {S−1vi}Mi=1 always
satisfies this, {S−1vi}Mi=1 is called the canonical dual frame of F .
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Gabor Frames

Definition

(a) Let ϕ ∈ CN and Λ ⊆ (Z/NZ)× (Z/NZ)̂. The Gabor system,
(ϕ,Λ) is defined by

(ϕ,Λ) = {enτmϕ : (m, n) ∈ Λ}.

(b) If (ϕ,Λ) is a frame for CN we call it a Gabor frame.
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Adjoint Subgroup

Definition
Let Λ ⊆ (Z/NZ)× (Z/NZ)̂ and H0 = {` : (0, `) ∈ Λ} ⊆ (Z/NZ)̂.
The adjoint subgroup of Λ, Λ◦ ⊆ (Z/NZ)× (Z/NZ)̂, is defined by

Λ◦ = {(m, n) : e`τkenτm = enτme`τk , ∀(k , `) ∈ Λ}
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Time-Frequency Shifts as a Basis for Linear Operators

Theorem
The set of normalized time-frequency shifts,{

1√
N
e`τk : (k , `) ∈ (Z/NZ)× (Z/NZ)̂

}
forms an orthonormal

basis for the N2-dimensional Hilbert-Schmidt space of linear
operators on CN .
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Janssen’s Representation

Theorem
Let Λ be a subgroup of (Z/NZ)× (Z/NZ)̂ and ϕ ∈ CN . Then,
the (ϕ,Λ) Gabor frame operator has the form

S =
|Λ|
|G |

∑
(m,n)∈Λ◦

〈ϕ, enτmϕ〉enτm.
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Wexler-Raz Criterion

Theorem
Let Λ be a subgroup of (Z/NZ)× (Z/NZ)̂. For Gabor systems
(ϕ,Λ) and (Ψ,Λ), we have

x =
∑

(k,`)∈Λ

〈x , e`τkΨ〉e`τkφ

if and only if for every (m, n) ∈ Λ◦,

〈ϕ, e`τkΨ〉 = |G |/|Λ|δ(m,n),(0,0).
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Definition

Let ϕ ∈ CN . ϕ is said to be a constant amplitude zero
autocorrelation (CAZAC) sequence if

∀k ∈ (Z/NZ), |ϕk | = 1 (CA)

and

∀m ∈ (Z/NZ),m 6= 0,
1

N

N−1∑
k=0

ϕk+mϕk = 0. (ZAC)
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Examples

Quadratic Phase Sequences

Let ϕ ∈ CN and suppose for each k , ϕk is of the form
ϕk = e−πip(k) where p is a quadratic polynomial. The following
quadratic polynomials generate CAZAC sequences:

I Chu: p(k) = k(k − 1)

I P4: p(k) = k(k − N), N is odd

I Odd-length Wiener: p(k) = sk2, gcd(s,N) = 1, N is odd

I Even-length Wiener: p(k) = sk2/2, gcd(s, 2N) = 1, N is even

Mark Magsino (UMD) Gabor Frames and CAZACs
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Examples

Let p be prime. The Legendre symbol is defined by

(
a

p

)
=


0, if a ≡ 0 mod p

1, if a ≡ n2 mod p for some , n 6= 0

−1, otherwise
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Examples

Björck Sequences

Let p be prime and ϕ ∈ Cp be of the form ϕk = e iθ(k). Then ϕ
will be CAZAC in the following cases:

I If p ≡ 1 mod 4, then,

θ(k) =

(
k

p

)
arccos

(
1− p

1 +
√
p

)
I If p ≡ 3 mod 4, then,{

arccos
(

1−p
1+p

)
, if

(
k
p

)
= −1

0, otherwise
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Properties

I ϕ ∈ CN is CAZAC if and only if ϕ̂ is CAZAC.
I If ϕ ∈ CN is CAZAC, then so is

I If |c | = 1, cϕ[k] (Rotation)
I τmϕ[k] = ϕ[k −m] (Translation)
I enϕ[k] = e2πikn/Nϕ[k] (Modulation)
I If gcd(j ,N) = 1, πjϕ[k] = ϕ[jk] (Decimation)
I ϕ[k] (Conjugation)
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Question

Given a length N, how many CAZAC sequences of length N
(whose first term is 1) are there?
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(Partial) Answer

I If N = p prime, there are at most
( p−1

2p−2

)
CAZAC sequences.

(Haagerup)

I If N is composite and is not square-free, then there are
infinitely many. (Björck-Saffari)

I It is unknown whether there are finite or infinitely many if N
is composite and square-free.

Mark Magsino (UMD) Gabor Frames and CAZACs



Gabor Frames CAZAC Sequences CAZAC Generated Gabor Frames Gram Matrix Method

Connection to Hadamard Matrices

Definition
Let H be a complex-valued N × N matrix.

(a) H is called a Hadamard matrix if H∗H = NI dN .

(b) H is called a circulant matrix if for each j ≥ 2, the j-th row is
a translation of the first row by j − 1.
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Connection to Hadamard Matrices

Theorem
Let ϕ ∈ CN and let H be the circulant matrix given by

H =


ϕ
τ1ϕ
τ2ϕ
· · ·

τN−1ϕ


Then, ϕ is a CAZAC sequence if and only if H is Hadamard. In
particular there is a one-to-one correspondence between CAZAC
sequences and circulant Hadamard matrices.
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Connection to Cyclic N-roots

Definition
x ∈ CN is a cyclic N-root if it satisfies

x0 + x1 + · · ·+ xN−1 = 0

x0x1 + x1x2 + · · ·+ xN−1x0 = 0

· · ·
x0x1x2 · · · xN−1 = 1
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Connection to Cyclic N-roots

Theorem

(a) If ϕ ∈ CN is a CAZAC sequence then,(
ϕ1

ϕ0
,
ϕ2

ϕ1
, · · · , ϕ0

ϕN−1

)
is a cyclic N-root.

(b) If x ∈ CN is a cyclic N-root then,

ϕ0 = x0, ϕk = ϕk−1xk

is a CAZAC sequence.

(c) There is a one-to-one correspondence between CAZAC
sequences which start with 1 and cyclic N-roots.
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DPAF and STFT

Definition
Let ϕ,ψ ∈ CN .

(a) The discrete periodic ambiguity function of ϕ, Ap(ϕ), is
defined by

Ap(ϕ)[m, n] =
1

N

N−1∑
k=0

ϕ[k+m]ϕ[k]e−2πikn/N =
1

N
〈τ−mϕ, enϕ〉.

(b) The short-time Fourier transform of ϕ with window ψ, Vψ(ϕ),
is defined by

Vψ(ϕ)[m, n] = 〈ϕ, enτmψ〉.
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Full Gabor Frames Are Always Tight

Theorem
Let ϕ ∈ CN \ {0}. and Λ = (Z/NZ)× (Z/NZ)̂. Then, (ϕ,Λ) is
always a tight frame with frame bound N‖ϕ‖2

2.
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Λ◦-sparsity

Definition
Let ϕ ∈ CN , Λ ⊆ (Z/NZ)× (Z/NZ)̂, and Λ◦ be the adjoint
subgroup of Λ. We say that Ap(ϕ) is Λ◦-sparse if for every
(m, n) 6= (0, 0) ∈ Λ◦ we have Ap(ϕ)[m, n] = 0.
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Λ◦-sparsity and Tight Frames

Theorem
Let ϕ ∈ CN \ {0} and let Λ ⊆ (Z/NZ)× (Z/NZ)̂ be a subgroup.
(ϕ,Λ) is a tight frame if and only if Ap(ϕ) is Λ◦-sparse. The frame
bound is |Λ|Ap(ϕ)[0, 0].
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Λ◦-sparsity and Tight Frames

Proof
By Janssen’s representation and using the definition of Ap(ϕ) we
have,

S =
|Λ|
N

∑
(k,`)∈Λ◦

〈e`τkϕ,ϕ〉e`τk =
|Λ|
N

∑
(k,`)∈Λ◦

〈τkϕ, e−`ϕ〉e`τk

= |Λ|
∑

(k,`)∈Λ◦

Ap(ϕ)[−k ,−`]e`τk = |Λ|
∑

(k,`)∈Λ◦

Ap(ϕ)[k, `]e−`τ−k .

If Ap(ϕ) is Λ◦-sparse, then S is |Λ|Ap(ϕ)[0, 0] times the identity.
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Λ◦-sparsity and Tight Frames

To prove that Λ◦-sparsity is a necessary condition, we note that for
S to be tight we need

S = |Λ|
∑

(k,`)∈Λ◦

Ap(ϕ)[k , `]e−`τ−k = A Id .

We can rewrite this condition into∑
(k,`)∈Λ◦\{(0,0}

|Λ|Ap(ϕ)[k , `]e−`τ−k + (|Λ|Ap(ϕ)[0, 0]− A)Id = 0.

Since time-frequency shifts are linearly independent, we must have
that Ap(ϕ) is Λ◦-sparse and the frame bound is |Λ|Ap(ϕ)[0, 0]. �
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DPAF of Chu Sequence

Ap(ϕChu)[m, n] :{
eπi(m

2−m)/N , m ≡ n modN

0, otherwise
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DPAF of length 15 Chu sequence
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Figure: DPAF of length 15 Chu
sequence.
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Example: Chu/P4 Seqeunce

Proposition

Let N = abN ′ where gcd (a, b) = 1 and ϕ ∈ CN be the Chu or P4
sequence. Define K = 〈a〉, L = 〈b〉 and Λ = K × L.

(a) Λ◦ = 〈N ′a〉 × 〈N ′b〉.
(b) (ϕ,Λ) is a tight Gabor frame bound NN ′.
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DPAF of Even Length Wiener Sequence

Ap(ϕWiener)[m, n] :{
eπism

2/N , sm ≡ n modN

0, otherwise
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DPAF of a 16 length Wiener sequence
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Figure: DPAF of length 16 P4
sequence.
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DPAF of Björck Sequence
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Figure: DPAF of length 13 Björck sequence.
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DPAF of a Kronecker Product Sequence

Kronecker Product:
Let u ∈ CM , v ∈ CN .
(u ⊗ v)[aM + b] = u[a]v [b]
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Figure: DPAF of Kroneker product of
length 7 Bjorck and length 4 P4.
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Example: Kronecker Product Sequence

Proposition

Let u ∈ CM be CAZAC, v ∈ CN be CA, and ϕ ∈ CMN be defined
by the Kronecker product: ϕ = u ⊗ v . If gcd (M,N) = 1 and
Λ = 〈M〉× 〈N〉, then (ϕ,Λ) is a tight frame with frame bound MN.
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Gram Matrix

Definition
Let F = {vi}Mi=1 be a frame for CN . The Gram matrix, G , is
defined by

Gi ,j = 〈vi , vj〉.

This is the same as the linear operator given by TT ∗, where T is
the analysis operator.
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Gram Matrix and DPAF

In the case of Gabor frames F = {e`mτkmϕ : m ∈ 0, · · · ,M − 1},
we can write the Gram matrix in terms of the discrete periodic
ambiguity function of ϕ:

Gm,n = Ne−2πikn(`n−`m)/NAp(ϕ)[kn − km, `n − `m]
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Rank of the Gram Matrix

Lemma
Let T be an m × n complex-valued matrix and let G := TT ∗.
Then, rank(G ) = rank(F ).
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