Constructing Tight Gabor Frames Using CAZAC Sequences

Mark Magsino

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

October 10, 2017

Table of contents

Gabor Frames

CAZAC Sequences

CAZAC Generated Gabor Frames

Gram Matrix Method

Outline

Gabor Frames

CAZAC Sequences

CAZAC Generated Gabor Frames

Gram Matrix Method

Frames

A finite frame for \mathbb{C}^N is a set $\mathcal{F} = \{\varphi_k\}_{k=1}^M$ such that there exists constants $0 < A \le B < \infty$ where

$$A \|v\|_2^2 \leq \sum_{k=1}^m |\langle v, \varphi_k \rangle| \leq B \|v\|_2^2$$

for any $v \in \mathbb{C}^N$. \mathcal{F} is called a *tight frame* if A = B is possible.

Theorem

 \mathcal{F} is a frame for \mathbb{C}^N if and only if \mathcal{F} spans \mathbb{C}^N .

The Frame Operator

Definition Let $\mathcal{F} = \{v_i\}_{i=1}^M$ be a frame for \mathbb{C}^N , $x \in \mathbb{C}^N$, and $c \in \mathbb{C}^M$. (a) The analysis operator, $T : \mathbb{C}^N \to \mathbb{C}^M$, is given by: $T(x) = \{\langle v_i, x \rangle\}_{i=1}^M.$ (b) The synthesis operator, $T^* : \mathbb{C}^M \to \mathbb{C}^N$, is given by: $T^*(c) = \sum c[i]v_i.$ (c) The frame operator, $S: \mathbb{C}^N \to \mathbb{C}^N$, is given by $S = T^*T$, i.e., $S(x) = \sum \langle v_1, x \rangle v_i.$

Reconstruction via Frames

Theorem

Let $\mathcal{F} = \{v_i\}_{i=1}^M$ be a frame for \mathbb{C}^N and $x \in \mathbb{C}^N$. Then,

$$x = \sum_{i=1}^{M} \langle x, S^{-1} v_i \rangle v_i.$$

Theorem

If \mathcal{F} is a tight frame with bound A, then $S = A Id_N$. In partciular, $S^{-1} = A^{-1}Id_N$.

Reconstruction via Frames

Definition Let $\mathcal{F} = \{v_i\}_{i=1}^M$ be a frame for \mathbb{C}^N . If for every $x \in \mathbb{C}^N$ $\mathcal{G} = \{u_i\}_{i=1}^M$ satisfies

$$x=\sum_{i=1}^M \langle x, u_i \rangle v_i,$$

then \mathcal{G} is said to be a *dual frame* for \mathcal{F} . Since $\{S^{-1}v_i\}_{i=1}^M$ always satisfies this, $\{S^{-1}v_i\}_{i=1}^M$ is called the *canonical dual frame* of \mathcal{F} .

Gabor Frames

Definition

(a) Let $\varphi \in \mathbb{C}^N$ and $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$. The Gabor system, (φ, Λ) is defined by

$$(\varphi, \Lambda) = \{e_n \tau_m \varphi : (m, n) \in \Lambda\}.$$

(b) If (φ, Λ) is a frame for \mathbb{C}^N we call it a Gabor frame.

Adjoint Subgroup

Definition Let $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ and $H_0 = \{\ell : (0, \ell) \in \Lambda\} \subseteq (\mathbb{Z}/N\mathbb{Z})$. The *adjoint subgroup* of Λ , $\Lambda^{\circ} \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$, is defined by

$$\Lambda^{\circ} = \{ (m, n) : e_{\ell} \tau_k e_n \tau_m = e_n \tau_m e_{\ell} \tau_k, \forall (k, \ell) \in \Lambda \}$$

Fram Matrix Method

Time-Frequency Shifts as a Basis for Linear Operators

Theorem

The set of normalized time-frequency shifts, $\left\{\frac{1}{\sqrt{N}}e_{\ell}\tau_{k}:(k,\ell)\in (\mathbb{Z}/N\mathbb{Z})\times (\mathbb{Z}/N\mathbb{Z})\right\}$ forms an orthonormal basis for the N²-dimensional Hilbert-Schmidt space of linear operators on \mathbb{C}^{N} .

Janssen's Representation

Theorem

Let Λ be a subgroup of $(\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})^{\widehat{}}$ and $\varphi \in \mathbb{C}^{N}$. Then, the (φ, Λ) Gabor frame operator has the form

$$S = \frac{|\Lambda|}{|G|} \sum_{(m,n)\in\Lambda^{\circ}} \langle \varphi, e_n \tau_m \varphi \rangle e_n \tau_m.$$

Wexler-Raz Criterion

Theorem

Let Λ be a subgroup of $(\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$. For Gabor systems (φ, Λ) and (Ψ, Λ) , we have

$$x = \sum_{(k,\ell)\in\Lambda} \langle x, e_\ell \tau_k \Psi \rangle e_\ell \tau_k \phi$$

if and only if for every $(m, n) \in \Lambda^{\circ}$,

$$\langle \varphi, \mathbf{e}_{\ell} \tau_k \Psi \rangle = |G|/|\Lambda| \delta_{(m,n),(0,0)}.$$

Outline

Gabor Frames

CAZAC Sequences

CAZAC Generated Gabor Frames

Gram Matrix Method

Definition

Let $\varphi \in \mathbb{C}^N$. φ is said to be a *constant amplitude zero* autocorrelation (CAZAC) sequence if

$$\forall k \in (\mathbb{Z}/N\mathbb{Z}), |\varphi_k| = 1$$
 (CA)

and

$$\forall m \in (\mathbb{Z}/N\mathbb{Z}), m \neq 0, \frac{1}{N} \sum_{k=0}^{N-1} \varphi_{k+m} \overline{\varphi_k} = 0.$$
 (ZAC)

Examples

Quadratic Phase Sequences

Let $\varphi \in \mathbb{C}^N$ and suppose for each k, φ_k is of the form $\varphi_k = e^{-\pi i p(k)}$ where p is a quadratic polynomial. The following quadratic polynomials generate CAZAC sequences:

• Chu:
$$p(k) = k(k-1)$$

• P4:
$$p(k) = k(k - N)$$
, N is odd

- ▶ Odd-length Wiener: $p(k) = sk^2$, gcd(s, N) = 1, N is odd
- ▶ Even-length Wiener: $p(k) = sk^2/2$, gcd(s, 2N) = 1, N is even

Examples

Let p be prime. The Legendre symbol is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & \text{if } a \equiv 0 \mod p \\ 1, & \text{if } a \equiv n^2 \mod p \text{ for some }, n \neq 0 \\ -1, & \text{otherwise} \end{cases}$$

Examples

Björck Sequences

Let p be prime and $\varphi \in \mathbb{C}^p$ be of the form $\varphi_k = e^{i\theta(k)}$. Then φ will be CAZAC in the following cases:

• If $p \equiv 1 \mod 4$, then,

$$heta(k) = \left(rac{k}{p}
ight) rccos \left(rac{1-p}{1+\sqrt{p}}
ight)$$

• If $p \equiv 3 \mod 4$, then,

$$\begin{cases} \arccos\left(\frac{1-p}{1+\rho}\right), & \text{if } \left(\frac{k}{\rho}\right) = -1\\ 0, & \text{otherwise} \end{cases}$$

Properties

- $\varphi \in \mathbb{C}^N$ is CAZAC if and only if $\widehat{\varphi}$ is CAZAC.
- If $\varphi \in \mathbb{C}^N$ is CAZAC, then so is
 - If |c| = 1, $c\varphi[k]$ (Rotation)
 - $\tau_m \varphi[k] = \varphi[k m]$ (Translation)
 - $e_n \varphi[k] = e^{2\pi i k n/N} \varphi[k]$ (Modulation)
 - If gcd(j, N) = 1, $\pi_j \varphi[k] = \varphi[jk]$ (Decimation)
 - ▶ \overline{\varphi}[k] (Conjugation)

Question

Given a length N, how many CAZAC sequences of length N (whose first term is 1) are there?

(Partial) Answer

- ► If N = p prime, there are at most $\binom{p-1}{2p-2}$ CAZAC sequences. (Haagerup)
- If N is composite and is not square-free, then there are infinitely many. (Björck-Saffari)
- It is unknown whether there are finite or infinitely many if N is composite and square-free.

Connection to Hadamard Matrices

Definition

Let H be a complex-valued $N \times N$ matrix.

- (a) *H* is called a *Hadamard matrix* if $H^*H = NI d_N$.
- (b) *H* is called a *circulant matrix* if for each $j \ge 2$, the *j*-th row is a translation of the first row by j 1.

Connection to Hadamard Matrices

Theorem

Let $\varphi \in \mathbb{C}^N$ and let H be the circulant matrix given by

$$H = \begin{bmatrix} & \varphi & & \\ & & \tau_1 \varphi & & \\ & & \tau_2 \varphi & & \\ & & \ddots & \\ & & & \tau_{N-1} \varphi & & \end{bmatrix}$$

Then, φ is a CAZAC sequence if and only if H is Hadamard. In particular there is a one-to-one correspondence between CAZAC sequences and circulant Hadamard matrices.

Connection to Cyclic *N*-roots

Definition $x \in \mathbb{C}^N$ is a cyclic *N*-root if it satisfies

$$\begin{cases} x_0 + x_1 + \dots + x_{N-1} = 0\\ x_0 x_1 + x_1 x_2 + \dots + x_{N-1} x_0 = 0\\ \dots\\ x_0 x_1 x_2 \cdots x_{N-1} = 1 \end{cases}$$

Connection to Cyclic N-roots

Theorem

(a) If $\varphi \in \mathbb{C}^N$ is a CAZAC sequence then,

$$\left(\frac{\varphi_1}{\varphi_0}, \frac{\varphi_2}{\varphi_1}, \cdots, \frac{\varphi_0}{\varphi_{N-1}}\right)$$

is a cyclic N-root. (b) If $x \in \mathbb{C}^N$ is a cyclic N-root then,

$$\varphi_0 = x_0, \varphi_k = \varphi_{k-1} x_k$$

is a CAZAC sequence.

(c) There is a one-to-one correspondence between CAZAC sequences which start with 1 and cyclic N-roots.

Outline

Gabor Frames

CAZAC Sequences

CAZAC Generated Gabor Frames

Gram Matrix Method

Mark Magsino (UMD)

DPAF and STFT

Definition

Let $\varphi, \psi \in \mathbb{C}^N$.

(a) The discrete periodic ambiguity function of φ, A_p(φ), is defined by

$$A_{p}(\varphi)[m,n] = \frac{1}{N} \sum_{k=0}^{N-1} \varphi[k+m]\overline{\varphi[k]} e^{-2\pi i k n/N} = \frac{1}{N} \langle \tau_{-m} \varphi, e_{n} \varphi \rangle.$$

(b) The short-time Fourier transform of φ with window ψ , $V_{\psi}(\varphi)$, is defined by

$$V_{\psi}(\varphi)[m,n] = \langle \varphi, e_n \tau_m \psi \rangle.$$

Full Gabor Frames Are Always Tight

Theorem Let $\varphi \in \mathbb{C}^N \setminus \{0\}$. and $\Lambda = (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$. Then, (φ, Λ) is always a tight frame with frame bound $N \|\varphi\|_2^2$.

Λ° -sparsity

Definition

Let $\varphi \in \mathbb{C}^N$, $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$, and Λ° be the adjoint subgroup of Λ . We say that $A_p(\varphi)$ is Λ° -sparse if for every $(m, n) \neq (0, 0) \in \Lambda^\circ$ we have $A_p(\varphi)[m, n] = 0$.

$\Lambda^\circ\text{-sparsity}$ and Tight Frames

Theorem

Let $\varphi \in \mathbb{C}^N \setminus \{0\}$ and let $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ be a subgroup. (φ, Λ) is a tight frame if and only if $A_p(\varphi)$ is Λ° -sparse. The frame bound is $|\Lambda|A_p(\varphi)[0, 0]$.

$\Lambda^\circ\text{-sparsity}$ and Tight Frames

Proof

By Janssen's representation and using the definition of $A_p(\varphi)$ we have,

$$S = \frac{|\Lambda|}{N} \sum_{(k,\ell)\in\Lambda^{\circ}} \langle e_{\ell}\tau_{k}\varphi,\varphi\rangle e_{\ell}\tau_{k} = \frac{|\Lambda|}{N} \sum_{(k,\ell)\in\Lambda^{\circ}} \langle \tau_{k}\varphi,e_{-\ell}\varphi\rangle e_{\ell}\tau_{k}$$
$$= |\Lambda| \sum_{(k,\ell)\in\Lambda^{\circ}} A_{p}(\varphi)[-k,-\ell]e_{\ell}\tau_{k} = |\Lambda| \sum_{(k,\ell)\in\Lambda^{\circ}} A_{p}(\varphi)[k,\ell]e_{-\ell}\tau_{-k}.$$

If $A_{\rho}(\varphi)$ is Λ° -sparse, then S is $|\Lambda|A_{\rho}(\varphi)[0,0]$ times the identity.

Λ° -sparsity and Tight Frames

To prove that $\Lambda^\circ\text{-sparsity}$ is a necessary condition, we note that for S to be tight we need

$$S = |\Lambda| \sum_{(k,\ell) \in \Lambda^{\circ}} A_{p}(\varphi)[k,\ell] e_{-\ell} \tau_{-k} = A \operatorname{Id}.$$

We can rewrite this condition into

$$\sum_{(k,\ell)\in\Lambda^{\circ}\setminus\{(0,0\}}|\Lambda|A_{p}(\varphi)[k,\ell]e_{-\ell}\tau_{-k}+(|\Lambda|A_{p}(\varphi)[0,0]-A)Id=0.$$

Since time-frequency shifts are linearly independent, we must have that $A_p(\varphi)$ is Λ° -sparse and the frame bound is $|\Lambda|A_p(\varphi)[0,0]$.

Norbert Wiener Center for Harmonic Analysis and Applications

DPAF of length 15 Chu sequence

Time Shift

DPAF of Chu Sequence

$$A_{p}(\varphi_{Chu})[m, n]:$$

$$\begin{cases} e^{\pi i (m^{2}-m)/N}, m \equiv n \mod N \\ 0, & \text{otherwise} \end{cases}$$

sequence.

Figure: DPAF of length 15 Chu Norbert for Harmonic Analysis and Applications

1.0 - 0.8

> Magnitude 0.6

0.4

- 0.2

- 0.0

14

Example: Chu/P4 Seqeunce

Proposition

Let N = abN' where gcd (a, b) = 1 and $\varphi \in \mathbb{C}^N$ be the Chu or P4 sequence. Define $K = \langle a \rangle$, $L = \langle b \rangle$ and $\Lambda = K \times L$.

(a)
$$\Lambda^{\circ} = \langle N'a \rangle \times \langle N'b \rangle$$
.

(b) (φ, Λ) is a tight Gabor frame bound NN'.

DPAF of Even Length Wiener Sequence

$$egin{aligned} &A_p(arphi_{ ext{Wiener}})[m,n]:\ &\left\{ e^{\pi i s m^2/N},\ sm\equiv n ext{ mod } N\ 0, & ext{ otherwise} \end{aligned}
ight.$$

Figure: DPAF of length 16 P4 sequence.

DPAF of Björck Sequence

Figure: DPAF of length 13 Björck sequence.

DPAF of a Kronecker Product Sequence

Kronecker Product: Let $u \in \mathbb{C}^M$, $v \in \mathbb{C}^N$. $(u \otimes v)[aM + b] = u[a]v[b]$

Figure: DPAF of Kroneker product of length 7 Bjorck and length 4 P4.

Example: Kronecker Product Sequence

Proposition

Let $u \in \mathbb{C}^M$ be CAZAC, $v \in \mathbb{C}^N$ be CA, and $\varphi \in \mathbb{C}^{MN}$ be defined by the Kronecker product: $\varphi = u \otimes v$. If gcd (M, N) = 1 and $\Lambda = \langle M \rangle \times \langle N \rangle$, then (φ, Λ) is a tight frame with frame bound MN.

Outline

Gabor Frames

CAZAC Sequences

CAZAC Generated Gabor Frames

Gram Matrix Method

Gram Matrix

Definition

Let $\mathcal{F} = \{v_i\}_{i=1}^M$ be a frame for \mathbb{C}^N . The *Gram matrix*, *G*, is defined by

$$G_{i,j} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle.$$

This is the same as the linear operator given by TT^* , where T is the analysis operator.

Gram Matrix and DPAF

In the case of Gabor frames $\mathcal{F} = \{e_{\ell_m} \tau_{k_m} \varphi : m \in 0, \cdots, M-1\}$, we can write the Gram matrix in terms of the discrete periodic ambiguity function of φ :

$$G_{m,n} = N e^{-2\pi i k_n (\ell_n - \ell_m)/N} A_p(\varphi) [k_n - k_m, \ell_n - \ell_m]$$

Rank of the Gram Matrix

Lemma

Let T be an $m \times n$ complex-valued matrix and let $G := TT^*$. Then, rank(G) = rank(F).

