A Delsarte-Style Proof of the Bukh–Cox Bound

Mark Magsino (Joint work with Dustin G. Mixon and Hans Parshall)

The Ohio State University

July 12, 2019

Mark Magsino (OSU)

SIAM Bern 2019

July 12, 2019 1/21

The Bukh–Cox Bound

3 Bukh–Cox Bound via Linear Programming

Outline

1 The Bukh–Cox Bound

Bukh–Cox Bound via Linear Programming

Mark Magsino (OSU)

SIAM Bern 2019

July 12, 2019 3 / 21

- The Bukh–Cox bound addresses the line packing problem: Pack n points in $\mathbb{R}\mathbf{P}^{d-1}$ ($\mathbb{C}\mathbf{P}^{d-1}$) that maximizes the minimum distance.
- Instances of this problem can be traced back to Tammes and F. Tóth.
- Most recent results identify new packings which achieve equality in the Welch Bound.
- Bukh and Cox discovered a different bound, along with a family of packings which achieve said bound.

Definition

Let $X = \{x_i\}_{i \in [n]}$ be a sequence of unit vectors in \mathbb{C}^d . We define the *coherence* of X to be

$$\mu(X) := \max_{i \le i < j \le n} |\langle x_i, x_j \rangle|.$$

Essentially, $\mu(X)$ computes the smallest angle between any two vectors in X.

Theorem (Welch '74)

Let n > d and let $X = \{x_i\}_{i \in [n]}$ be a sequence of unit vectors in \mathbb{C}^d . Then,

$$\mu(X) \ge \sqrt{\frac{n-d}{d(n-1)}},$$

where equality is achieved if and only if X is an equiangular tight frame in \mathbb{C}^d .

Theorem (Bukh, Cox '18)

Let n > d and let $X = \{x_i\}_{i \in [n]}$ be a sequence of unit vectors in \mathbb{C}^d . Then,

$$\mu(X) \ge \frac{(n-d)^2}{n + (n^2 - nd - n)\sqrt{1 + n - d} - (n-d)^2}.$$

Comparing the bounds

Figure 1: Coherence of best known packings in \mathbb{R}^6 for $5 \le n \le 40$ along with best known lower bounds. The Bukh–Cox bound is in green, and the Welch bound is in blue.

1 The Bukh–Cox Bound

Bukh–Cox Bound via Linear Programming

Mark Magsino (OSU)

SIAM Bern 2019

July 12, 2019 9/21

• Let $X = \{x_i\}_{i \in [n]}$ be any sequence in \mathbb{C}^d , and identify X with the $d \times n$ matrix with columns x_i .

- Let $X = \{x_i\}_{i \in [n]}$ be any sequence in \mathbb{C}^d , and identify X with the $d \times n$ matrix with columns x_i .
- Denote the set of $\mathbb{C}^{d \times n}$ matrices with unit norm columns as N(d, n).

- Let $X = \{x_i\}_{i \in [n]}$ be any sequence in \mathbb{C}^d , and identify X with the $d \times n$ matrix with columns x_i .
- Denote the set of $\mathbb{C}^{d \times n}$ matrices with unit norm columns as N(d, n).
- Denote the set of $\mathbb{C}^{d \times n}$ matrices corresponding to $\frac{n}{d}$ -tight frames by T(d, n).

- Let $X = \{x_i\}_{i \in [n]}$ be any sequence in \mathbb{C}^d , and identify X with the $d \times n$ matrix with columns x_i .
- Denote the set of $\mathbb{C}^{d \times n}$ matrices with unit norm columns as N(d, n).
- Denote the set of $\mathbb{C}^{d \times n}$ matrices corresponding to $\frac{n}{d}$ -tight frames by T(d, n).

• Define
$$\gamma(d, n) := \max_{Y \in T(d, n)} \|Y^*Y\|_1.$$

Lemma

Let n = d + k. Then, every $X \in N(d, n)$ satisfies

$$\mu(X) \ge \frac{n}{\|Y^*Y\|_1 - n} \ge \frac{n}{\gamma(k, n) - n}$$

Furthermore, X minimizes $\mu(X)$ over N(d,n) if X is equiangular and there exists $Y = \{y_i\}_{i \in [n]} \in T(k,n)$ such that

- (i) Y maximizes $||Y^*Y||_1$ over T(k, n),
- (ii) $XY^* = 0$, and

(iii)
$$sgn\langle x_i, x_j \rangle = -sgn\langle y_i, y_j \rangle$$
 for $1 \le i < j \le n$.

Relation to Welch Bound

Theorem

For all $Y \in T(k, n)$ we have

$$||Y^*Y||_1 \le n + \left[n(n-1)\left(\frac{n^2}{k} - n\right)\right]^{1/2}$$

Equality is achieved if and only if Y is an equiangular tight frame.

Corollary

Let n > d. For all $X \in N(d, n)$,

$$\mu(X) \ge \sqrt{\frac{n-d}{d(n-1)}}.$$

3 Bukh–Cox Bound via Linear Programming

$||Y^*Y||_1$ bound for Bukh–Cox

Theorem

For all $Y \in T(k, n)$ we have

$$||Y^*Y||_1 \le \frac{n^2(1+(k-1)\sqrt{1+k})}{k^2}$$

Equality is achieved when Y is of the form $Y = [Z|Z| \cdots |Z]$, where $Z \in \mathbb{C}^{k \times k^2}$ is an equiangular tight frame.

Corollary

Let n > d. For all $X \in N(d, n)$,

$$\mu(X) \ge \frac{(n-d)^2}{n + (n^2 - nd - n)\sqrt{1 + n - d} - (n-d)^2}.$$

To prove the theorem, we will need the following special polynomials:

$$Q_0(x) = 1,$$

$$Q_1(x) = x - \frac{1}{k},$$

$$Q_2(x) = x^2 - \frac{4}{k+2}x + \frac{2}{(k+1)(k+2)}.$$

- Without loss of generality assume $y_i \neq 0$ for every $i \in [n]$. First, we normalize the columns of Y, $\{y_i\}_{i \in [n]}$, by defining $z_i := y_i/||y_i||_2$.
- The desired bound comes from finding a feasible set of coefficients for the following linear program:

minimize
$$c_0$$

subject to $f(x) = c_0 Q_0(x) + c_1 Q_1(x) + c_2 Q_2(x),$
 $0 \le c_1 \le k c_0, c_2 \le 0,$
 $f(x) \ge \sqrt{x}, \forall x \in [0, 1].$

Proof of Theorem (2/6)

Suppose we have a feasible (c_0, c_1, c_2) . Then,

$$||Y^*Y||_1 = \sum_{i=1}^n \sum_{j=1}^n |\langle z_i, z_j \rangle| ||y_i||_2 ||y_j||_2$$

$$\leq \sum_{i=1}^n \sum_{j=1}^n f(|\langle z_i, z_j \rangle|^2) ||y_i||_2 ||y_j||_2$$

$$= \sum_{\ell=0}^2 c_\ell \sum_{i=1}^n \sum_{j=1}^n Q_\ell(|\langle z_i, z_j \rangle|^2) ||y_i||_2 ||y_j||_2$$

Proof of Theorem (3/6)

Now we establish a bound for each innermost term $\ell = \{0, 1, 2\}$. Starting with $\ell = 0$, since $Q_0(x) = 1$, we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} Q_0(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 = \left(\sum_{i=1}^{n} \|y_i\|_2\right)^2 := S.$$

For $\ell = 1$, using $Q_1(x) = x - \frac{1}{k}$, we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} Q_1(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|\langle y_i, y_j \rangle|^2}{\|y_i\|_2 \|y_j\|_2} - \frac{S}{k}.$$

Proof of Theorem (4/6)

To bound the first term in the $\ell = 1$ case,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|\langle y_i, y_j \rangle|^2}{\|y_i\|_2 \|y_j\|_2} \le \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|\langle y_i, y_j \rangle|^2}{\|y_i\|_2^2} \right)^{1/2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|\langle y_i, y_j \rangle|^2}{\|y_j\|_2^2} \right)^{1/2} = \frac{n^2}{k}.$$

Overall, for $\ell = 1$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} Q_1(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 \le \frac{1}{k} (n^2 - S).$$

Proof of Theorem (5/6)

For the $\ell = 2$ case, let $\{e_m\}_{m=1}^{d_2}$ be an orthonormal basis for the (finite) vector space spanned by degree-4 projective harmonic polynomials in k variables. There exists a constant $C_{d_2,k}$ such that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} Q_2(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 = C_{d_2k} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{m=1}^{d_2} e_m(z_i) \overline{e_m(z_j)} \|y_i\|_2 \|y_j\|_2$$
$$= C_{d_2,k} \sum_{m=1}^{d_2} \left| \sum_{i=1}^{n} e_m(z_i) \|y_1\|_2 \right|^2 \ge 0.$$

Multiplying both sides by $c_2 \leq 0$ gives

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_2 Q_2(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 \le 0.$$

Proof of Theorem (6/6)

Putting all the bounds together gives

$$||Y^*Y||_1 = \sum_{\ell=0}^2 c_\ell \sum_{i=1}^n \sum_{j=1}^n Q_\ell(|\langle z_i, z_j \rangle|^2) ||y_i||_2 ||y_j||_2$$

$$\leq c_0 S + c_1 \frac{1}{k} (n^2 - S) \leq c_0 n^2.$$

Equality is achived if

$$\begin{array}{l} \bullet \quad |\langle y_i, z_j \rangle| = |\langle z_i, y_j \rangle|, \forall i, j, \\ \bullet \quad f(|\langle z_i, z_j \rangle|^2) = |\langle z_i, z_j \rangle|, \forall i, j, \\ \bullet \quad \sum_i \sum_j Q_2(|\langle z_i, z_j \rangle|^2) \|y_i\|_2 \|y_j\|_2 = 0, \\ \bullet \quad \|y_i\|_2 = 1, \forall i, \end{array}$$

which occurs when Y is multiple copies of an ETF of k^2 vectors in \mathbb{C}^k .