Biangular Gabor Frames and Zauner's Conjecture

Mark Magsino (Joint work with Dustin G. Mixon)

The Ohio State University

Aug 15, 2019

Outline

2 Proposed Approach

Outline

2 Proposed Approach

Frames

Definition

 $F = \{f_j\}_{j=1}^n$ in \mathbb{C}^d is a **frame** if

$$A\|x\|_2^2 \le \sum_{j=1}^n |\langle x, f_j \rangle|^2 \le B\|x\|_2^2 \quad \forall x \in \mathbb{C}^d$$

Furthermore, we say F is

- **tight** if A = B is possible
- unit norm if $||f_j||_2 = 1$ for every j
- equiangular if $\exists \alpha \ge 0$ such that $|\langle f_j, f_{j'} \rangle|^2 = \alpha$ whenever $j \ne j'$

Zauner's Conjecture

Equiangular tight frames (ETFs) span optimally packed lines

Many applications:

- Compressed sensing
- Digital fingerprinting
- Multiple description coding

Important question: When do they exist?

Theorem (Gerzon bound)

There exists an ETF of n vectors in \mathbb{C}^d only if $n \leq d^2$.

Zauner's Conjecture: For every d, there exists an ETF of d^2 vectors.

Gabor Frames

Definition

- **Translation** operator: (Tv)(j) = v(j-1)
- Modulation operator: $(Mv)(j) = e^{2\pi i j/d} \cdot v(j)$
- **Gabor** frame: $G(v) := \{M^{\ell} T^{k} v\}_{k,\ell=0}^{d-1}$
- Fiducial vector: v such that G(v) is equiangular

Gabor frames are classically used in time-frequency analysis

Zauner's Conjecture (again): There's a fiducial vector in every \mathbb{C}^d (!)

Idea #1:

- Fiducial vectors = sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega(2^{2^d})$ runtime...

Idea #1:

- Fiducial vectors = sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega(2^{2^d})$ runtime...

Idea #2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega(d^4)$ description...

Idea #1:

- Fiducial vectors = sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega(2^{2^d})$ runtime...

Idea #2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega(d^4)$ description...

Idea #3:

- Stark units provide a shorter description of several known fiducials (!)
- Kopp (2018) leveraged this feature to find first known fiducial for d = 23
- Constructive proof of Zauner will likely be conditioned on Stark conjectures...

Idea #1:

- Fiducial vectors = sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega(2^{2^d})$ runtime...

Idea #2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega(d^4)$ description...

Idea #3:

- Stark units provide a shorter description of several known fiducials (!)
- Kopp (2018) leveraged this feature to find first known fiducial for d = 23
- Constructive proof of Zauner will likely be conditioned on Stark conjectures...

What about an unconditional proof? We'll need to be non-constructive ...

Outline

Biangular Gabor frames

Big idea: Relax to biangular frames and use intermediate value theorem

Definition

 $G(\mathbf{v})$ is (α, β) -biangular if

(i)
$$|\langle v, T^k v \rangle|^2 = \alpha$$
 for $k \in \{1, \dots, d-1\}$, and

(ii)
$$|\langle v, M^{\ell}T^{k}v\rangle|^{2} = \beta$$
 for $k \in \{0, \cdots, d-1\}$ and $\ell \in \{1, \cdots, d-1\}$.

Lemma

If G(v) is an (α, β) -biangular Gabor frame for \mathbb{C}^d , then $\alpha + d\beta = \|v\|_2^4$.

• G(1) is $(d^2, 0)$ -biangular

• G(1) is $(d^2, 0)$ -biangular

• $G(\hat{f})$ is (0, 1/d)-biangular if f is the Alltop sequence

$$f(t) := \frac{1}{\sqrt{d}} e^{2\pi i t^3/d}$$

(requires prime $d \ge 5$, "Gabor MUB")

• G(1) is $(d^2, 0)$ -biangular

• $G(\hat{f})$ is (0, 1/d)-biangular if f is the Alltop sequence

$$f(t) := \frac{1}{\sqrt{d}} e^{2\pi i t^3/d}$$

(requires prime $d \ge 5$, "Gabor MUB")

• G(v) is equiangular \implies G(v) is biangular with $\alpha = \beta$

• G(1) is $(d^2, 0)$ -biangular

• $G(\hat{f})$ is (0, 1/d)-biangular if f is the Alltop sequence

$$f(t) := \frac{1}{\sqrt{d}} e^{2\pi i t^3/d}$$

(requires prime $d \ge 5$, "Gabor MUB")

- G(v) is equiangular \implies G(v) is biangular with $\alpha = \beta$
- G(v) is biangular \implies G(cv) is biangular for $c \in \mathbb{C}^{\times}$

Real Algebraic Varieties

Define $B_d := \left\{ v \in \mathbb{C}^d \text{ for which } G(v) \text{ is biangular} \right\}$

Paradoxical observations:

- B_d is defined by $\Omega(d^2)$ polynomials over 2d + 2 real variables
- (Computer) For some d, B_d/\mathbb{C}^{\times} is one-dimensional

Lemma

Given $d \in \mathbb{N}$, suppose

- B_d is path-connected, and
- there exists a Gabor MUB in \mathbb{C}^d .

Then there exists a fiducial in \mathbb{C}^d .

Proof of concept: d = 2

It's convenient to define $C_d := \{v \in B_d : v(0) = 1\}$

Easy calculation: C_2 = union of two circles:

$$v_0 = \left[\begin{array}{c} 1\\ (1+\sqrt{2})i \end{array}\right]$$

 $v^{\star} = fiducial$

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Path-Connectedness

Open question: For which d is B_d path-connected?

Sufficient condition:

Lemma		
C _d is path-connected	\implies	<i>B_d</i> is path-connected

Related work:

- Cahill, Mixon, Strawn (2017): FUNTFs are connected
- Needham, Shonkwiler (2018): Symplectic geometry techniques

Remainder of this talk: Numerical evidence of path-connectivity

Outline

Introduction and Motivation

2 Proposed Approach

Method

For each $d \in \{2, 4, 5\}$, do:

- Put $v_0 :=$ known numerical fiducial (Scott, Grassl 2010)
- Perturb v_0 and locally minimize $\sum (\text{defining polys})^2$ to get v_1

• For each j > 1, locally minimize from the perturbation

$$v_j + c \cdot rac{v_j - v_{j-1}}{\|v_j - v_{j-1}\|_2}$$

to get v_{j+1}

Results

Open Problems

• When is B_d path-connected?

We don't really need Gabor MUBs! Instead:
Find v ∈ C^d such that G(v) is (α, β)-biangular with α < 1/(d+1)

• Can we use B_d to find more numerical fiducials?

Thanks for listening!