Biangular Gabor Frames and Zauner's Conjecture

Mark Magsino
(Joint work with Dustin G. Mixon)

The Ohio State University
Aug 15, 2019

Outline

(1) Introduction and Motivation
(2) Proposed Approach
(3) Numerical Experiments

Outline

(1) Introduction and Motivation

(2) Proposed Approach

(3) Numerical Experiments

Frames

Definition

$F=\left\{f_{j}\right\}_{j=1}^{n}$ in \mathbb{C}^{d} is a frame if

$$
A\|x\|_{2}^{2} \leq \sum_{j=1}^{n}\left|\left\langle x, f_{j}\right\rangle\right|^{2} \leq B\|x\|_{2}^{2} \quad \forall x \in \mathbb{C}^{d}
$$

Mercedes-Benz

Furthermore, we say F is

- tight if $A=B$ is possible
- unit norm if $\left\|f_{j}\right\|_{2}=1$ for every j
- equiangular if $\exists \alpha \geq 0$ such that $\left|\left\langle f_{j}, f_{j^{\prime}}\right\rangle\right|^{2}=\alpha$ whenever $j \neq j^{\prime}$

Zauner's Conjecture

Equiangular tight frames (ETFs) span optimally packed lines
Many applications:

- Compressed sensing
- Digital fingerprinting
- Multiple description coding

Important question: When do they exist?

Theorem (Gerzon bound)

There exists an ETF of n vectors in \mathbb{C}^{d} only if $n \leq d^{2}$.

Zauner's Conjecture: For every d, there exists an ETF of d^{2} vectors.

Gabor Frames

Definition

- Translation operator: $(T v)(j)=v(j-1)$
- Modulation operator: $(M v)(j)=e^{2 \pi i j / d} \cdot v(j)$
- Gabor frame: $G(v):=\left\{M^{\ell} T^{k} v\right\}_{k, \ell=0}^{d-1}$
- Fiducial vector: v such that $G(v)$ is equiangular

Gabor frames are classically used in time-frequency analysis
Zauner's Conjecture (again): There's a fiducial vector in every $\mathbb{C}^{d}(!)$

Constructive solutions to Zauner

Idea \#1:

- Fiducial vectors $=$ sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega\left(2^{2^{d}}\right)$ runtime...

Constructive solutions to Zauner

Idea \#1:

- Fiducial vectors $=$ sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega\left(2^{2^{d}}\right)$ runtime...

Idea \#2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega\left(d^{4}\right)$ description...

Constructive solutions to Zauner

Idea \#1:

- Fiducial vectors $=$ sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega\left(2^{2^{d}}\right)$ runtime...

Idea \#2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega\left(d^{4}\right)$ description...

Idea \#3:

- Stark units provide a shorter description of several known fiducials (!)
- Kopp (2018) leveraged this feature to find first known fiducial for $d=23$
- Constructive proof of Zauner will likely be conditioned on Stark conjectures...

Constructive solutions to Zauner

Idea \#1:

- Fiducial vectors $=$ sol'ns to polynomial system
- Compute a Gröbner basis! $\Omega\left(2^{2^{d}}\right)$ runtime...

Idea \#2:

- Known fiducials have nice field structure (!)
- Round numerical sol'ns! $\Omega\left(d^{4}\right)$ description...

Idea \#3:

- Stark units provide a shorter description of several known fiducials (!)
- Kopp (2018) leveraged this feature to find first known fiducial for $d=23$
- Constructive proof of Zauner will likely be conditioned on Stark conjectures...

What about an unconditional proof? We'll need to be non-constructive...

Outline

(1) Introduction and Motivation

(2) Proposed Approach

(3) Numerical Experiments

Biangular Gabor frames

Big idea: Relax to biangular frames and use intermediate value theorem

Definition

$G(v)$ is (α, β)-biangular if
(i) $\left|\left\langle v, T^{k} v\right\rangle\right|^{2}=\alpha$ for $k \in\{1, \cdots, d-1\}$, and
(ii) $\left|\left\langle v, M^{\ell} T^{k} v\right\rangle\right|^{2}=\beta$ for $k \in\{0, \cdots, d-1\}$ and $\ell \in\{1, \cdots, d-1\}$.

Lemma

If $G(v)$ is an (α, β)-biangular Gabor frame for \mathbb{C}^{d}, then $\alpha+d \beta=\|v\|_{2}^{4}$.

Examples

- $G(\mathbf{1})$ is $\left(d^{2}, 0\right)$-biangular

Examples

- $G(\mathbf{1})$ is $\left(d^{2}, 0\right)$-biangular
- $G(\hat{f})$ is $(0,1 / d)$-biangular if f is the Alltop sequence

$$
f(t):=\frac{1}{\sqrt{d}} e^{2 \pi i t^{3} / d}
$$

(requires prime $d \geq 5$, "Gabor MUB")

Examples

- $G(\mathbf{1})$ is $\left(d^{2}, 0\right)$-biangular
- $G(\hat{f})$ is $(0,1 / d)$-biangular if f is the Alltop sequence

$$
f(t):=\frac{1}{\sqrt{d}} e^{2 \pi i t^{3} / d}
$$

(requires prime $d \geq 5$, "Gabor MUB")

- $G(v)$ is equiangular $\Longrightarrow G(v)$ is biangular with $\alpha=\beta$

Examples

- $G(\mathbf{1})$ is $\left(d^{2}, 0\right)$-biangular
- $G(\hat{f})$ is $(0,1 / d)$-biangular if f is the Alltop sequence

$$
f(t):=\frac{1}{\sqrt{d}} e^{2 \pi i t^{3} / d}
$$

(requires prime $d \geq 5$, "Gabor MUB")

- $G(v)$ is equiangular $\Longrightarrow G(v)$ is biangular with $\alpha=\beta$
- $G(v)$ is biangular
$\Longrightarrow G(c v)$ is biangular for $c \in \mathbb{C}^{\times}$

Real Algebraic Varieties

Define $B_{d}:=\left\{v \in \mathbb{C}^{d}\right.$ for which $G(v)$ is biangular $\}$
Paradoxical observations:

- B_{d} is defined by $\Omega\left(d^{2}\right)$ polynomials over $2 d+2$ real variables
- (Computer) For some $d, B_{d} / \mathbb{C}^{\times}$is one-dimensional

Lemma

Given $d \in \mathbb{N}$, suppose

- B_{d} is path-connected, and
- there exists a Gabor MUB in \mathbb{C}^{d}.

Then there exists a fiducial in \mathbb{C}^{d}.

Proof of concept: $d=2$

It's convenient to define $C_{d}:=\left\{v \in B_{d}: v(0)=1\right\}$

Easy calculation: $C_{2}=$ union of two circles:

$$
\begin{aligned}
& v_{0}=\left[\begin{array}{c}
1 \\
(1+\sqrt{2}) i
\end{array}\right] \\
& v^{\star}=\text { fiducial } \\
& v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Path-Connectedness

Open question: For which d is B_{d} path-connected?

Sufficient condition:

Lemma

C_{d} is path-connected $\quad \Longrightarrow \quad B_{d}$ is path-connected

Related work:

- Cahill, Mixon, Strawn (2017): FUNTFs are connected
- Needham, Shonkwiler (2018): Symplectic geometry techniques

Remainder of this talk: Numerical evidence of path-connectivity

Outline

(1) Introduction and Motivation

(2) Proposed Approach

(3) Numerical Experiments

Method

For each $d \in\{2,4,5\}$, do:

- Put $v_{0}:=$ known numerical fiducial (Scott, Grassl 2010)
- Perturb v_{0} and locally minimize $\sum(\text { defining polys })^{2}$ to get v_{1}
- For each $j>1$, locally minimize from the perturbation

$$
v_{j}+c \cdot \frac{v_{j}-v_{j-1}}{\left\|v_{j}-v_{j-1}\right\|_{2}}
$$

to get v_{j+1}

Results

$$
d=2
$$

$d=4$

$$
d=5
$$

Open Problems

- When is B_{d} path-connected?
- We don't really need Gabor MUBs! Instead:

Find $v \in \mathbb{C}^{d}$ such that $G(v)$ is (α, β)-biangular with $\alpha<\frac{1}{d+1}$

- Can we use B_{d} to find more numerical fiducials?

Questions?

Thanks for listening!

